Kazanci, M., Haciosmanoglu, S. K., & Kamel, G. (2021). Synchrotron Fourier transform infrared microspectroscopy (sFTIRM) analysis of unfolding behavior of electrospun collagen nanofibers. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy251, 119420.


Abstract

Collagen nanofibers are popular extracellular matrix (ECM) materials in regenerative medicine. Electrospinning of collagen dissolved in organic solvents is widely used for fabricating anisotropic collagen nanofibers; however, such fibers are water-soluble and require cross-linking before use as scaffolds for cell culture. Herein, in-situ crosslinking during electrospinning process is suggested by using different chemical agents, namely genipin and glutaraldehyde, and physical crosslinking method (UV light). sFTIRM; Synchrotron Fourier-Transform Infrared Microspectroscopy is a powerful tool that sheds light on the molecular structure of collagen nanofibers. Applied extraction methods caused shifts on pro

tein band positions. Electrospinning process prevents self-assembly of collagen molecules and obtained electrospun collagen nanofibers have lower band positions. Crosslinkers have effect on the secondary structure of collagen molecules. Among different crosslinkers, genipin in-situ crosslinking process perform better in preserving the native structure of electrospun collagen nanofibers than the physical crosslinking method (UV).

 

-- Access the paper